Structure of the 4-Oxo-2-butenoic Acid Alkyl Ester Moiety. IV.* Methyl-4-(3-Oxo-1-piperazinyl)-4-oxo-2-butenoate

By Marek L. Gıówka
Institute of General and Ecological Chemistry, Technical University of Lódż, Zwirki 36, 90-924 Lódż, Poland

(Received 7 January 1991; accepted 9 May 1991)

Abstract

C}_{9} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{4}, M_{r}=212 \cdot 2\), monoclinic, $P 2_{1} / c$, $a=17.022$ (2), $b=6.161$ (1), $c=10.031$ (2) $\AA, \quad \beta=$ $103.92(1)^{\circ}, \quad V=1021 \cdot 1 \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.38 \mathrm{Mg} \mathrm{m}^{-3}, \lambda(\mathrm{Cu} K \alpha)=1.54178 \AA$, Ni filter, $\mu=$ $0.89 \mathrm{~mm}^{-1}, F(000)=448, T=293 \mathrm{~K}, R=0.066$ and $w R=0.074$ for 1247 observed intensities. Intermolecular hydrogen bonds join molecules related by a 2_{1} axis to form infinite chains running in the [010] direction, with butenoate groups perpendicular to the chain

Experimental. The compound crystallized from chloroform as large transparent plates. Data collection and accurate cell determination ($9<\theta<16^{\circ}, 25$ reflections) were performed on a CAD-4 diffractometer. The crystal size was $0.31 \times 0.20 \times 0.04 \mathrm{~mm}$. 1942 independent intensities [1247 considered observed with $I \geq 3 \sigma(I)]$ were measured using the $\omega / 2 \theta$ scan technique ($\theta_{\max }=75^{\circ},-21 \leq h \leq 21,0 \leq$ $k \leq 7,0 \leq l \leq 12$). Three standards monitored during data collection showed no significant change in their intensities. The data were corrected for Lorentz and polarization effects, and for absorption according to Walker \& Stuart (1983) (transmission factors between 0.434 and 0.979).
The structure was solved by direct methods (Sheldrick, 1986) and refined by full-matrix least squares (Sheldrick, 1976) with anisotropic temperature factors for non-H atoms, isotropic temperature parameters for H atoms and an isotropic extinction parameter $g=0.009$ (2) (Larson, 1967). Non-H and H atom parameters were refined in separate blocks. The function minimized was $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2}$ where $w^{-1}=\sigma^{2}\left(F_{o}\right)+0.00225 F_{o}^{2}$. The refinement converged to a maximum shift/e.s.d. of 0.03 and 0.04 for non- H and H atom blocks comprising 137 and 50 variables, respectively. The final $R=0.046, w R=$ $0.053, S=0.874$. The maximum and minimum peaks in the final difference Fourier synthesis were 0.26 and -0.25 e \AA^{-3}. All calculations were carried out on an AMSTRAD 1512 microcomputer. Scattering factors were taken from SHELX.

> * Part III: Glowka (1991).

The molecular conformation and atomic labeling scheme are shown in Fig. 1. The atomic coordinates are given in Table 1 and selected bond distances and angles for non-H atoms are in Table 2.*

Related literature. A number of piperazides, 2methylpiperazides, 2,5 -dimethylpiperazides, piper-azide-2,5-diones, hydrazines, ethylenediamines and ureas of 4-oxo-2-butenoates have been synthetized and tested against transplantable neoplasms (Groszkowski, Najman \& Sienkiewicz, 1972;

[^0]

Fig. 1. A view of the molecule with the atomic labeling scheme (Johnson, 1976).

Table 1. Final atomic coordinates of non- H atoms and equivalent isotropic temperature factors $\left(\AA^{2}\right)$

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \sum_{i} \sum_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$B_{\text {cq }}$
C(2)	0.7683 (2)	0.2904 (7)	0.7432 (4)	3.62 (10)
O (2)	0.7573 (2)	0.0929 (5)	0.7263 (3)	4.98 (9)
C(3)	0.7226 (3)	0.4474 (8)	0.6403 (4)	$4 \cdot 51$ (11)
C(4)	0.6788 (3)	0.3792 (9)	0.5223 (4)	4.94 (14)
C(5)	0.6377 (3)	0.5279 (13)	0.4130 (5)	$6 \cdot 35$ (18)
$\mathrm{O}(5)$	0.6461 (3)	0.7216 (10)	0.4166 (4)	$9 \cdot 69$ (19)
O (6)	0.5931 (2)	0.4207 (8)	0.3081 (3)	7.24 (13)
C(7)	0.5564 (4)	$0 \cdot 5452$ (14)	0.1861 (6)	9.83 (25)
$\mathrm{N}(01)$	0.8241 (2)	$0 \cdot 3671$ (5)	0.8534 (3)	$3 \cdot 25$ (8)
$\mathrm{C}(02)$	0.8752 (2)	0.2039 (6)	0.9363 (4)	$3 \cdot 69$ (11)
C(03)	0.9267 (2)	0.2761 (7)	1.0717 (4)	$3 \cdot 23$ (9)
$\mathrm{O}(03)$	0.9699 (2)	$0 \cdot 1405$ (5)	1.1449 (3)	4.40 (8)
$\mathrm{N}(04)$	0.9244 (2)	0.4835 (5)	1.1061 (3)	$3 \cdot 51$ (9)
C(05)	0.8680 (3)	0.6396 (7)	1.0280 (5)	4.56 (12)
$\mathrm{C}(06)$	0.8518 (3)	0.5919 (6)	0.8754 (4)	4.01 (12)

Table 2. Bond lengths (\AA), valency angles $\left({ }^{\circ}\right)$ and selected torsional angles $\left({ }^{\circ}\right)$

Andrzejewska-Golec, Broda \& Najman, 1977; Graczyk, Pakulska, Groszkowski \& Najman, 1980; Groszkowski \& Najman, 1986, and references therein). Some showed promising activity in mice. The $-\mathrm{CH}=\mathrm{CH}-\mathrm{C}=\mathrm{O}$ fragment which is also present in butenoates is supposed to be responsible for the cytostatic activity of acrylates (Lee, Kim, Piantadosi, Huang \& Geissman, 1974; Loeffler, Sajadi \& Hall, 1977). Therefore we started an X-ray study on the 4-oxo-2-butenoate moiety (Główka \& Iwanicka, 1990; Główka, Iwanicka \& Najman, 1991; Główka, 1991).

The bond lengths and angles in the present structure agree with the previous results to within 3σ limits. In the crystal, the molecules are linked in infinite chains by means of intermolecular $\mathrm{N}(04)$ $\mathrm{H} \cdots \mathrm{O}(03)\left[2-x, y-\frac{1}{2}, \frac{5}{2}-z\right]$ hydrogen bonds with $\mathrm{N} \cdots \mathrm{O}$ and $\mathrm{H} \cdots \mathrm{O}$ distances of 2.872 (4) and 2.04 (2) \AA, respectively and an $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ angle of $168(3)^{\circ}$. The chains run along the 2_{1} axis.

Thanks are due to Dr L. Najman (Medical Academy, Łódź) for the compounds. The work was supported by the Polish Ministry of National Education (research project RP.II.10).

References

Andrzejewska-Golec, E., Broda, B. \& Najman, L. (1977). Acta Pol. Pharm. 34, 531-538.
GŁówka, M. L. (1991). Acta Cryst. C47, 1680-1683.
Geówka, M. L. \& Iwanicka, I. (1990). Acta Cryst. C46, 1262-1264.
Geówka, M. L., Iwanicka, I. \& Najman, L. (1991). Acta Cryst. C47, 618-620.
Graczyk, J., Pakulska, W., Groszkowski, S. \& Najman, L. (1980). Acta Pol. Pharm. 37, 249-254.

Groszkowski, S. \& Najman, L. (1986). Acta Pol. Pharm. 43, 327-330.
Groszkowski, S., Najman, L. \& Sienkiewicz, J. (1972). Rocz. Chem. 46, 269-273.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Larson, A. C. (1967). Acta Cryst. 23, 664-665.
Lee, K.-H, Kim, S.-H, Piantadosi, C., Huang, E.-S. \& Geissman, T. A. (1974). J. Pharm. Sci. 63, 1162-1163.

Loeffler, L. J. Sajadi, Z. \& Hall, I. H. (1977). J. Med. Chem. 20, 1578-1584.
Sheldrick, G. M. (1976). SHELX76. A program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. A program for crystal structure solution. Univ. of Göttingen, Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Structure of Tris(5-acetyl-3-thienyl)methane:Ethyl Acetate Inclusion Compound

By P. H. van Rooyen and H. M. Roos
Department of Chemistry, University of Pretoria, Pretoria, 0002, Republic of South Africa

(Received 12 February 1990; accepted 9 May 1991)

Abstract

C}_{42} \mathrm{H}_{40} \mathrm{O}_{8} \mathrm{~S}_{6}, \quad M_{r}=865 \cdot 1\), triclinic, $P 1$, $a=12.329$ (5), $\quad b=11.229$ (5), $\quad c=8.229$ (5) $\AA, \quad \alpha=$ 98.42 (5) , $\quad \beta=106.43$ (5), $\quad \gamma=99.05(5)^{\circ}, \quad U=$ 1057 (1) $\AA^{3}, \quad Z=1, \quad D_{x}=1 \cdot 36 \mathrm{Mg} \mathrm{m}^{-3}, \lambda($ Mo $K \alpha)$ $=0.7107 \AA, \quad \mu=3.23 \mathrm{~cm}^{-1}, \quad F(000)=452, \quad T=$

0108-2701/91/112468-03\$03.00

298 K , final $w R=0.056, R=0.084$ for 4198 observed reflections with $F>0$ and 625 variable parameters. The clathrate structure consists of two tris(5-acetyl-3-thienyl)methane host molecules and one ethyl acetate guest molecule, the guest molecules being

[^0]: * Lists of anisotropic thermal parameters for non-H atoms, structure factors and \mathbf{H}-atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 54250 (9 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

